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ABSTRACT

This report, consisting of Parts I, Il and IIl, is concerned with three
different aspects of the response of arches and domes under dyaamic loads.

In Part I the accuracy of an approximate design method for arches sub-
Jjected to dynamic loads is evaluated by comparing the predictions of this ~nethod
with the exact solutions, Primary emphasis is placed on the effects of loads
which are uniformly distributed around the arch,

In Part I the response of circular elastic arches under a moving pressure
pulsc i3 investigated by the modal method of analysis. Various combinations of
natural medes are considered, and the combination of the smallest number of
modes which satisfactorily approximates the exact solution is determined, It
is concluded that good approximation to the true response can be obtained by
considering the contributions of the first antisymmetrical and the first two sym-
metrical natural modes of vibration.

Part il presents a derivation of an approximate theory for the dynamic
responsc of spherical shells loaded unsymmetrically by time-varying pressures.
Non-linear effects are considered so that the resulting equations reflect the
buckling tendencies associated with large-deflection behavior.
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EVALUATION OF A DESIGN METHCD FCR ARCHES SUBJECTED TO DYNAMIC LOAUS

1. Gbject and Scops

Thue purpose of the study described in this part of the report
vas to ovaluate the accuracy of the design method prescntek iz Reference 1¥
for arches subjected to the pressures associated with an atomic explosion.
The approach used consists of evaluating the response of several arches by
this method and comparing the results with those obtained on the basis of
the method reported in Reference 2. In the latter method, the actual arch
is replaced by a discrete fresmework consisting of a series of rigid bars,
flexible joints, and concentrated point wmasses. For the sake of brevity,
this method will be referred <o as the "exact” method, and the method of
Ref. 1 as the approximate method.

The solutions presented are for two-hinged, circular, elastic
arches of uniform cross section. The majoerity of the solutions are for u
uniform all-around pressure with a time-wise variation represented by a
triangle with an initia)l peak. OSome results are also presented for & tri-
angulsr pressure pulse moving across the arch.

Inasmuch as Reference 1 is not readily available, a brief de-
scription of the approximate method is given in the following scction. The
"exaci" method is deserided in detail in Reference 2.

2, Review of Approximate Method

In this method the actusl loading on the srch is separated into
& symmetrical component and an antisymmetrical component, as shows in Fig. 1.
The intensity of the pressuce for the symmetrical component, Pgr ie con=
sidered to be constant around the arch. Simildarly, for the cntisymmetxical
componen%, the pressure intensities, Y tor i+ vindvard and leevard sides

are considered to be equal but of opposite siga.

* Refereiive figure and equation mmbers refer to those in each part of the
report.
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The rcsponse unaer the sysmetrical componeat of loading is evalu-
ated by considering two modes of deformation:
(a) Tme "uniform compression” modz, which is congidered to
produce 8 uniform compression without any bending, and
(b) The "tending-compression” mode in which the arch bends in-
ward at the crowvs and outverd near the haunches. It is
agsumed that the bending moment at the crown is due to
this mode only.
The intensity of the loasd associated with the uniform compression mode is
taken as the intensity of the symmetricsl losd cumponcnt, vwhereas the in-
tensity of the load associated with the compression-bending mode is taken
a8 one-third of that for the uniform compression mode.

The rcsponse due to the sntis trical

P t of loading is
evaluated by considering the so-called "deflection mode” which is anti-
symmetrical about the crown., Thus the computation of the response in each
mode involves the analysis of a singii-degree-of-{reedom system.

The natural pericdsof the arch in the various modes of deforma-
tion are determined as follows: For a circular arch with uniform cross

gection, the natural period of the uniform compression mode, Tuc' is taken

L

Tuc = 21

(1)
vhere m denotes the mass per unit of length of the arch, R the radius of
the arch, A the cross sectional area, and E the modulus of eclasticity of
the zaterial of vhich the arch is composed.

The period of the bernding-compressior mode for no thrust in the
arch, Téb' 18 taken equal to the pericd of e 5innly supported Yewa huving

a span equal to one-third the a.. s2ngth of the arch, L.e.
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ch =3 (3}
The symbol <P° denotes the angle of opering of the arch, es shown in Fig. 1.

The prime on ch is used to indicate that the effect of the thrust is not

considered in this expression.

The corresponding period of the deflection mode, Té, is taken

as
2
2L,
d n
4% \i& )
where
R¢
o
Li»—3 (5)

and Cl is 8 correction factor accounting for the fact that the arch does

not act entirely as a beaa. The following expressions are given for cl:
For a hinged arch,

2
°1 < B 2+ 1.5 , (6a)
n" -2
and for a fixed arch
2
n+1 L
C. = (6v)
1 los
vhere
n
negt m
o

The "actual” periods, ch and Td' which incorporcte the effect
of the thrust, are determined approximately rv «u".tiplying the velues of

1l \ 3 O
I‘cb and S’d by the facter
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vhere ; is the intensity of the "model pressure” on the arch av the in-
stent that the corresponding model displacement is maximum and Pep is the

critical static duckling pressure. For a& ui:ig:d arch, Poy is given by the

4l
0 -

With the intensity of the louding and the value ot the naturel

equation

period ot vibration for each mode of deformation deteruined, the response
of the arch in eech ot these rodes is evaluated by analyzing the arch as a
system with a single degree of frzedonm.

For en arch subjected o the symmetrical component ¢f loading
shown in Fig. 1, the axial force associated with the uniform compression

mode is determined from the equation

N= (AF)ypR, (9)

vhere p,:R is approximately the rorce produced under static conditions, and
(A.F. )N is the amplification ractor for N. This factor depends on ithe shape
of the applied pressurc and the ratio of tiie duration of the pulse to the
natural period cf vibratior of the particular mode of derormation corsidercd.
The maximunm.bending momend associated with the dending-compression mede
occurs at the quarter points of tho arch, snd may be expressed as

Mn (A.F.)M N, (10)

——
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vherc the static moment, Hs, is taken as
#Er/r) :
k-]

X e T A @y.2 ()
1 - (3-"

The first factor on the right side of this expression represents the naxi-
aug moment in a simply supported beam bavirg a span length I‘ch' as defined
by Bq. (3), aad subjectzd to a uniform s*atic pressure ot intensity pc/}.

The symbol r represerts the radius of gyration of the cross section of the
arch. "he second factor accounts for the effect of arch curvature. The

amplification factor {A.F. )H must be determined on the tasis of the period
of the compression-bending mode, réb.
For the antisymmetrical p t ot loading shown in Fig. 1, the

bending mozment is determined rrom Eq. (10). However, the ampliricasfon
tactor must be based on the period or the detlection modc ‘I‘&, and the
static moment must be determined ror a pressure b and a length I’d as given
by Eq. (5). For a hinged arch, the e:piession for M, becomes
2
vo(#/r) N

3 35 Pafr v, 2 (12)
1- 0

The effect of the axial thrust is taken into account in {iguring

4he bending resistance of the arch. For the compression berding mode, the

bending resisiance is taken as the product of the corresponding resistence
for no thruet multipiied by the factor

1 - By,
vhere p;‘r 18 the buckling load correspounding to a length Lw =R @o/}. For

the deflection mode, the reduction factor is “<*w- g3

1 -¥p,,
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where i3 as previously defined. ‘ihe inverse of these factors can also
te interpreted as magnificstion factors to be applied to £q. (10}.
3: Berdte of Cem) ?.sons for Arches Under iniforz Pressure

3.1 General. The 21esponse curves presented in ihe rezsinder of
this pext of the report are for “wo-binged circular elastic arches of wuni~
forn cress section subjected to 8 uniform ali-around pressure prlse. fThe
Pressure-time reiationship is represented by an initi=lly peakeé triangle,
as shewn in the upper left corner of Fig. 2a. The peak intensity of the
pressure is denoted by ) and the duration of the pulse by "d' The values
of these quantitics are specified in terms of the dimensionless ratios
Po/pcr and td/!l‘o, vhere Pcr represents the critical buckling pressure cor-
responding {0 an antisymmetricel mode of deformation, and 'ro represents the
breathing period of vibration of a complete ring having the seze radius and
cross section as the arch.

It has been shown (Ref. 2) that, for the conditions considered,
the axial forec in the arci is fairly uniforn along the arch and that the
maximm moment occurs at the crown, In view af this, only the moment and
the axial force at the crown will be considered.

Since the arch is uniformly loaded, in the application of the
approximate meinod, only the uniform compression mode and the bending-
cozprescicn mode need bs cousidered. The former mcde yiel!« the axfel fogoe
in the arch, and the latter gives the moment at the crown. For e tri-
angular pulse investigated, the amplification factor, A.F., for an elastic

system that 1s initielly et rest is given by the following equstions:

For tftd,
; b L2 :
AF. =1 - q cos 2% 1 4 o= ;d a2 g (23)




by

i bl emed

S

st -y

P,

WA fwewed RS e peesy s e

-1.7-
Fer t 2 t,,
22 t-3
A7 = NA® + B 5in (2x - T+ a) (1%a)
where
t t
A mcoson ¢ AT (1)
oy 2% td T
t 2
S S S S ox & sin ox <& e
B omo-g N {1 ~ cos 2x T) + sineag (1%e)
a =t 4 (1%a)

In the above expressions, the quantity T denctes the natural period of the
particular mode of deformation considered.

3.2 Comparison of Typical Response Curves. In Fig. 2 are shown
the time-histories of the axial for:e and the bending moment at the crown of
a two-hinged arch with the {ollowving dinmensions:

Rise-to-Span Ratio = 1'/:[.<> = 0.20 (corresponds to P, = 87.22°)

Slenderncss Ratio = Lo/r = 100 {corresponds to Rr = 72.5)

Tae intensity of the peak pressure and the duration of the pulse
are as follows:

PP, =2 amd  t/T ez
The dashed ~urve, reproduced from Reference 2, way be considered to represent
the exact solution. The solid curve was obteined by the approximate method.

From Fig. 2a it cen be seen that, except for a slight phase difier-
ence which is of no importance from & design point of view, the approximate
solution for the axial force is in very good ee-.enent with the “cxact” eolu-

ticn, Inciuwded in this figure is also the golutici obtained by xe¢jlacing the
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value 0f the natural pericd of the unijorz compression mede ty the value of
the “axtensional mode™ of vibration of the arch. For the particvlar arch
investisated, tine extensfonal mode corresponds to the second syrmetrical
mode of vibration (see Fig. 4.2b of Reference 2}. The use of this period
does not elter the solution significantly.

I Fig. 2b, although the peak vaiues of the bending mcment de-
termined by the two methods are in reasonavle agreemont, the perfods of
the oscillotions are significantiy different. The indications are that the
approximate method does not account properly ior the behavior of tae systex
in bending.

In order to gain better insight into the true behavicr of the
system, the moment at the crown was evaluated by cpplication of the midal
method of analysis. In thls analysis, the effect of the axial thrust on
bending was neglected. In Fig. 3 are given the modal contributionc for the
first three symmetrical modes. In addition, the sum of these contributions
is compared with the exact solution. It can te seen that the solution based
on the first three modes is in good agreement with the exact solution. The
indications are that all threce contributions, particularly the one asso~
ciated vith the second or extensional mode, are quite importent.

3.3 Effect of Pressure Intensity Parameter. In Figs. U4 and S are

shown time histories of the axial force end the bending moment at the crown

of the arch considered before, except thnt the intensity of tne peak pressure

has the values of Po/"cr = 0.5 and Po/pcr < 2,0. The other parameters of

the problem are the came ss thosc indicated in Fig. 2. The “exact” solu-
fons presented in {kese and all subsequent figwrec are ieproduced fyom

Reference 2. In Figs. 4a and Sa, the solid curves are identical with the

vorresponding curve in Fig. 28, since in the spproxizate methed the axial




ol PR ) W Wew

Pt
[ R

| o]

T g pe

panmnrg

L ete B oS

sk

¥

-1.9-

force is considered to be indeperdent cf the ratio po/pcx_. £t is of interest
to note that the best sgreement between the eppreximate and exact solutions
for axial force is obtained for Fig. ha whicl: corresposds to the smaliest
value of po/pcx' considered. In general, the observations that can be mace
about the surves in Figs. b and 5 ere sinilar to *hose made about Fig. 2.

5.1 Bffect of Pulsc Puration Parameter. The arch considered in
the preceding cection was also enalyzed for vslues of "d/To in the range
between 0.25 and %.0. In Fig. 6 are jgiven the time-histories of the axial
force and bvending moment at the crown for a value of td/:l‘o v 0.75, ard in
Fig. T are given spectrux curves for the complete range of t.d/'.ro velucs con-
sidered. Thnese curves express the absolute maximum value of the axisl force
and bending moment at the crown as & function of the parameter td/T x Both
the exac;: and the aprroximate solutions are indicated. Xt can be seen that
the maximum axial force predicted by the approximate method is In very goed
agreement with that obtained by the “exact” method. On the other hand,
there are significant differcnces between tae values of the maximum moments
predicted by the two methods.

2.5 Bffect of Arch Dimensions. Comparative solutions were ob-

tained for a number ot arches with different dimencions. Two groups of
problems were considered:

(8) Arches with a rise-span ratio, f/LG, of 0.2, and slenderness
ratios, L /r, of 50, 100 and 200.

(b) Arches with a valve of Lo/r = 100 and rise-span ratios of
0.1, 0.2 and 0.5. Tae latter ratios correspond to values of @e equal to
#5.24°%, 97.m° and 180°, respectively. Ths losd parameverz are taken u8

P/Pep = 1 and ty/T = 2.
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The results are swwaried in Pigs. 8 through 13. It can te seen
that, in all cases, the peak value of the axfel force predicted bty the
approximavermethod is in excellent agreement witl the exact velue. On the
other hand, both the tine histories end the pesk values of the Yending
xomente corresponding to the two methuds of solution differ significently
from one another. The peak values of the tending moments are compared in
Figs. 10 and 13.

4. Comparisons for Arches Subjected o & Moving Eresgure Pulse

Tn Pig. 1k are shown the results obtaired for an arch subjected to
a moving pressure pulse. ‘The pressure-tize relationship was represented by

an initially peeked triangle. The problem parsmeters were:
t/L, = 0.2 L/r = 100
PO/PCF =1, t't‘/'l'o =1, t,d/tc w )

The quantity t, represents the transit time, i.e. the time required for the

t
front of the pulsc to move acrogs the arch. The remaining symbols have the
sare neaning as before.

In the approximate soiution, the peak intensity of the symmetricel

component of ioading (Sce Fig. 1) vas teken as
by
-l (25)
1.5 + 0.52
and the corresponding intensity of the antisymmetrical or deflection-modc

component was taken as

?
o
pd_?_.5+0.5-;

154052

Po (26)

The pressure-tine relaticiship and the duration of .ese component luadings

verc connidered to be the sauie as thosc of the actual pulse.
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From the results presented in Fig. 15 it can be seen that the
approximate solution for the axial force is not in as gocd agreement with
{he exact solution as for the cases considerea vreviously. I¢ rmay be worth
nothing, however, that in this ¢se the stress corresponding to the maximum
sxial Torce is reiatively small in comparison to that resulting from the
maximm bending moment. The maximum bendiy; roment occurs at the 3/h point,
and its peak value is predicted with reasonsble accuracy, as cen be scen
frex Fig, e,

In Fig. 15 are given response curves for mozent at the 1/% and
3/4 points of the arch considered befcre, except *hat the duration of the
pulse is represented by a value of td/tt = 2. It can be seen that the agree-
ment between the solutions obteined by the two methods is fairly good, par-
ticvlarly when the curves corresponding te the absolute maximm effect are
considered.

5. Suwmery

The results of the comparat.ve studfes prescnted can be summarized
as follows:

(1) For arches subjected to & uniform radis) pressure, the approxi-
mate method can predict with excellent sccuracy the magnitude of the maximum
axia) force in the arch. However, boith the time history and the magnitude
of the uaximum moment determined by this methud may be sigrificantly different
from the exact results. The resulis of a modal analysis that has been mede
suggest that the computation of the bending moment at the crown requires
consideration of the first three symmetrical zmodes of vibraticn.

(2) On the basis of the two golutions obtafned for arches sudb=-
Jected 0 a triengular moving pressure, it .ip '’ s tha® the value of the
maxizum 2oment predicted by the approximate rethod is in reavontule agree-

zept with the exact value. Tre axial forces are not piedicted as sccurately
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in this case as for a symmetrical load; however, this may not be very
significant cince the stress resulting from the maximum axial force is
usually small ir comparison to thaat due o the maximue momeat.

(3) It is telieved that, for elastic arches; s more rational
approxinate method of snalysis can be deveioped by considering the con-
tributions of the first two or three symmetrical mcdes of vibration and
of the first antisymmetrical mode.
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DYNAMIC ANALYSIS OF CIRCULAR ELASTIC ARCHES BY MODAL METHOD

1. Object and Scope
The general purpose of this study was to fnvestigate .he dynamic

response of elastic arches by application of the modal method of aralysis.
Specifically, it was desired to eveluate the rolative contribution of the
varjous natural modes to the total recponse, and to establish a busis for
the development of a simplified method of analycis.

Numerical solutions huve been obtained for e range of the para-
meters involved, and the complete sclutions incorporating the contrilutions
of all the natural modes of vibration were compared with corresponding
approximate solutions cbtained by considering a limited number of modes. An
attempt vas wade to determine the cexbination of the smailest number of modes
vhich best approximates the complete solution. All soiutions are for two-
hinged, circular, elastic arches subjected to a moving triangular pressure
pulse. In the analysis, the Sackling terdencies of the arch are neglected;
aceordingly, the response .s propurtional to the intensity of the applied
pressure.

A digital computer program was developed for the mumerical computa-
tion of the response. This progrem has Lzen developed specifically for an
arch subjected to a moving pressure pulse of triangular shape. The replace~
zent system is considered to have ten bars of equal horizontal projecti.ns.
A variable mode-counter set in the program makes it possible to consider any
desired number ot mudes.

In addition to the numerical results, brief descriptions of the
substitute structure used in the method of enmiya.s are included in this

report.
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2. Description of the Model
A éeneral view of the physical model used to spproximate the

actuzl arch i5 shown in Fig. 1. The model is sinflar to that presented in
Ref. J.*, with the exception that the continuwous arch is xepl~ind by ten
bars of equal horizontal projections instead of ten bars of equsd length.
With this arrangement the computation of the instantaneous distritution of
the load over the arch is simplified. The bars are considered to be mass-
less and rigid in both bending and axial deformation; the displacements and
angle charges sre defined at the Joints.

The lumped nass at any Jjoint J is given by the equation

vhere l" is the length of the jth bar and u is the mass per unit length of
the continuous arch.

Similarly the stiffness ot the flexible joint at J is derived from
the elastic properties of the actusl arch between mid-points of consecutive
panels and i3z given by the equatior

2 EI
+ ‘J+1

K, =
LR

vhere K, 1s the stiffness of Joint J, E is the elastic modulus, ard I {s the

J
mement of inertia of the cross section of the arch.

Tiie bars of the analogous framevork are numbered consecutively

starting with § = 0 at the left hinge and terminating with J « 10 at the right

* "Response of Arches under Dynazic loads,” by R.T. Eppink and A.5. velatso:,
University of Illinois Project, AFSWC - TR-60-53, Air Forc: 3pecial Weopons
Center, Kirtland Air Force Base, New Mexico, Dvcember 3980,
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hinge, ac shows in Fig. 2. Bars are numbered in the same orxder from 1 to 10,
with the bar connecting joints j-1 end J designated as ber j. The total
central opening angle of the arch js denoted by tPo. The deformed cenfigura-
tion of the arch axis 1s defined with respect to the undelvrusd shape in
tems of the radis) and tangentisl cooponents of the Joint dispiacements.
Fer Joint J these are designated as w 3 and v‘,. respectively. The displace-
ment ¥, is considered as positive radially inward, and v

3 J
as indicated in Fig. 1. The rotations of the bars ere considered positive

positive clockwise,

in a clackwise sense.
3. Method of Analysis
The method of analysis {s based on the modal analysis technique
as applied to the subsiitute structure. The data required for such an analy-
sis include the natural frequencics and modes of vibration of the model.
Since the distribution of the pressure aiong the arch varies with time, the
participation factors for the verious modes are time-dependent quantities.
The analysis presented here is restrizted to the elastic range, end buckling
tendencies sve ignored. In other words, the results are valid only for small
values of po/pcr, vhere Pop 18 the buckling pressure of the arch.
1he ccmputation of the response involves the following steps:
i. Determination of the natural frequencies ard modes of the sub-
stitute strutture.
{i. Determination of the load distribution acrosc the arch at any
tine.
444, Computation of the modal participation factors curresponding
to a discrete system of time intervals, the {ime increment c¢hosen Leiig s2all
enough to yleld solutions vhich are reasonubi sicwiatv. Such ¢ computavion

involves the derivation of the governing parcicioation factor wq.ation for
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each mode. An aprpr¢ximste marching . pe Af procedure was adopted for the
solution of the par<icipation factor equation. In this procedure, the
ingtantaseous participation factors and their time derdvatives for each
mode are obtained by ize of the appropriate gquantities at %2 previous tize
instant.

iv. Superposition of the modes at any time instant considering
the respective participation factors.

In this repoxt the details of the procedures are omitted. A
solutions were obtained on the ILLIAC, the digital computer of the dJniver-
sity of Illinois.

%, Numericsl Solutions

4.1 Problem Parameters. The properties of the arch are specified
in terms of the following parameters:
ﬂ?o = the totel opening angle of the arch.
Lo/r = the ratio of the span of the arch to the radius of gyra-
ion of the cross-section of ths arch, referred to as the
slenderness ratio.
The load parameters ere defined with respect to the fundumental
breathing period, To' of & complete ring of the same radius and thickness.

This period is given by the equation

n

nR
L= \E

The loed pavarsters mare

4. Duration of the blast pulss
'I‘o Breathing pericd of the completve ring

:_ o Iize of travel of the peak prescur2 front over the arch span
’I‘o Breathing pericd of thc complete xing
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k.2 Frotlems Considered. .umerical solutions were cbtained for
the following values of the paraceters:

%, = 6°, LO/'r =100, t/T =1, tJT s2ad5

?,=6° Lfr= 50, tft =1, t /T =2ea5

7, - %°,  Lfr=200, /7 =15 /T, =3ma75

%, =9 Lfr= 50, /T =15 /T =3ed 7.5
In all cases the time interval of iniegration ves taken as 0.05 TG.

Tne responss of the arch vas evaluated for the following condi-
tions:

(1) Considering all eighteen modes of vibration

(114) considering the first antisymmetrical mode and the first and
second syrmetrical modes. The latter solutfon will be referred 0 as the
three-mode solution. In addition, for several of the problems, soluticns
werce obtained conzidering only two modes of vivration. The cczbinations
considered included the first symmetrical aid the first entisymmetrical modes,
or the second symaetrical and the Iirst antisyzmmetrical modes. Finally,
some solutions were obtained by considering the first two syrmetrical and the
first two antisymeetrical modes. In this repcrt only a few of these solu-
tions are presented.

4.3 Comparison of Solutions Obtained by Two Different Melhods. As

a check on the accuracy of the computer progrem used to obtain the nus~rical
data presented herein, in Figs. 3 and 4 the tize histories of the dfsplece-
zments, mouents, and thruats determined by the eighteen mode solution are ¢om-
pared with those determined by application of “ne metuod deceribed in the
referéne listed on p. 2.2, These resulis arc . . an arch with ‘Po = 60° and

Lo/r s 100, The first four circular natural frequencies and the torresponding
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modes of vidretion of this zuich are swovn in Fig. 2. It can te seen that
there is fairly good agreement between the two solutions, the maximun
difference for the peak values of displacement:, moments, and thrusts
being less then 3 percont. The phase difference vetween the two soiutions
is due to the slightly different procedures caployed in the two methods tc
concentrate the external pressure at the ncde points.

k.4 Presentation and Discussion of Reswits. For eaca of the
provlexc enumerated abeve, the solutions were studied to detsimine the
combinaticz of modes which best approximated the eighteen mode solution.
Since the arch model considered Las eighteen degrees of freedom, the
eighteen mode solution represents the exact solution. In general, it was
found thet the solution based on the first antisyrmetrical mode end the
first two symmetrical modes provided a very good approximation to the srue
response.

In Figs. 5 through 14 are given the tize histories of the response
curves for displscements, moments, ond txial forces at selected points cf
the arch for several of thc problems considered. Both the three mode solu-
tion and the eighteen mode solution are presented. It can be scen that the
two sets of svlutions are zonsistently in geod sgreement. The best agreement
is obtained for displacements and axial forces. The moment curves are in-
fluenced to a greater extent by the higher zodes thar efthe: .ae deflection
or the axial rorce curves.

Por displacenrents, reasonable egreement was also obtainea by con-
sidering only the first symmstrical and the first antisyumetrical modes.
However, the results for moment and axial forces were generally unsatisfactory.

The solutions based on the tirst antigymmesrice: scde and the secona syme
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metricsl mode were generslly no bette: then the two mode solution referred

to above. For displ and s, the greatest coniribution to the

response vas provided by the first antisymmetrical mode.
5. Sumary

The results ¢f this study indicate that a satisfactory method of
anslysis for arches under moving pressures cen te developed by considering
only the first antisymmetrical and the first two symmetrical natural modes

of vibration.
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Bacond Symmstrical Mode; v = 9“"8‘/!:'11'
A
(]

FIC. 2 NATURAL MOIES OF VIBRATION; ‘90 = 60, Lo/r = 00

~
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AN APPROXIMATE THEORY FOR THE LARGE DYNAMIC DEFLFCTIONS
Y OF UNSYMMETRICALLY LOADED THIN SPHERICAL SHRELLS
)

Introduction

Presented herein is a general theory for the large deflections, but
amall strains, of spherical sheils lcaded uncy-metrically by time-varying,
external pressures. Three equations in three displacement unknowns are
developed by a variational proceduse empioying Hamilton's Principle of
Least Action.

The strain energy function used in the formulation of the total
energy of the shell is developed under the assumption that 1% state of
stress is approximately plane; that is, the effect of transverse shear stress
and of transverse normal stress, acting on surfaces parallel to the middle
surface, nsy be neglected. Thie assumption ylelds the usual Hooke's Law
relations used in ordinary plate theory.

The lav of derormation of a fiver of the shell is governed by the
Kirchoff-love Assumptions which sta*s that (a) points lying on a normal to
tac undeformed middle surface remein on the same normal t0 the deformed
middle surface, and (b) the Gispiuc&deils in the direction of the nomal to
the middle surface are approximately equat for all points on the same normal.

These assumptions restrict the following analysis tc thin shells
(-:—’ < -;—o). However, the cquations of motion include the effects of rotatory
inertia.

In the following development, the cxternal pressure is assumed to
be caused by adr Wlast, and is alvays Lyected nomal to the outer surface
of the shell,

The significant zontritutionz of tinls study inzlude the utention

of all the important nontiunear terms in the strain-displatezent relations,
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and a rigorous calculation of the potential energy of the external pressure

to make possible the consideravion of "dynemic anstability.”

Exect Strain-Displacement Kelations

The complete stiain-displacement relations for a spherlcal dome
have bteen derived eurlier,<2) and are swnnarized here for convenlent reference.
The position of any point on the shell in its undeformed state is defined by
the orthogonal curvilinear coordinates (9,9,2). .The &isplaccuent vector
{u,v,v) is chosen such that u azd v are tangent to tne & and 9 coordinate
lines, while w is directed outward along the surface normal (see Fig. 1).

{n the following relations, subscripts on W, v, w indicate partial
derivatives, while subscripts on € and y indicate the direction of the strain
component. The rodisl distance to a point of the shell, a + 2, is denoted by

e

2w s L 2 >, (.2
oo = 5 (ug#w) + " [(ue-ru) . (vg-u) + (ve )}

v,
B L
ew-r(ucoc9+sm6+w)

Vo
{ "or.9+ +u) +(—-?--vcoz6) *\sxn v)2]

%[(u)2+(v)2+(v ]

u
P 2 __ve
79@ "r <V6 * gin 0 v cot 9)
N u /
+ ;—5 [(“9’")('—2'“:\ 5 - v cot 0) + ("0 ""ij;_n i v)

Yo
- (:9)(-83—5 fucot O+ u)] ;)
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Tor = (o +32 - B + 3 [(3)00m) + (7)00) + ()50 ]

=)

— .
rsiné r

~

™

=
4

Yor = (v, *

-

W,
= [(u )(sln 5 - V cot 6) + {v )(qin 5 tucot6+w)+ (“z)(ER% - v)J

Assunption about Displacement Variation Through Thickness
The usual asswaption in beams, plates and shells that normals remafn

normal, straight and inextensional in the deformed state is used here. This
asswption about middle surface normals leads to the result that the displace-
ment vector (w,v,w) varies linearly with z through the shell thickness. Thus
we have:

u (6,9,2) = Yy (6,9,0) + z Yo (6,9,0)

v (6,9,2) = Yo (6,9,0) + 2z % (6,9,0) (2)

w (8,9,z) = Vo {6,9,0)

vhere (uo,vo,wo) is the digplazerant vector of a point on the middle surface
st z=0. ¥, is the rotation of the normed in the meridional plane. 80 is the
rotation of thic normal in a plane normal to the meridional plane. I the
rotaticns of the aormal are small, w(z) will not differ markedly frem w(ze0),
and so ¥ is assumed to be independent of ¥ end b,

The rotations of the normal are determined from the KirchofI-Love
Assuuptions. For the normal to remain straight during deformaticn, no shear
deformation may take place. This requires that

Tor“ Yo = © (%)
Substitution of Equaticns (1) and (2) into Eq. (. yiclds two simultancous

equations roluting ¥, ¥ and thelr derivatives.
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¥ {aswsugn ) + 8 {vgezB) - v -y
u@ % Y, ,

Y (et —— - & {s

v (sme"smv v cot 6 -z & cot &) ( 5u)

z 8 v,

+ucot B +zZYCoh O+ my -

sin 8

v,
2 P
+5‘(*”55.:16"51:}6

Since ¥ and & are independent of z, their values are required to
satisfy the auxiliary conditions: WG + 559 = Wq) + 5% = 0. An approximate

solution tc Egs (3e) is

W,
u-v v -
6 sin 6
Loty 6= P v, ()
;] atwewrcor 6 + _Q

sin 6

Finsily, to faciiitate the derivation of the equations of motion,

we approximate Eq. (3b) as

.- ¥
U¥g MY )
Lt ) & m

Approxinate Strain-Displacement Relations

Fraa the threec-dimensional expressiocn for iooke's Law, the require=-

ment that o, = 0 results in
E
o * 0 % (a0 &+ e+ )
an =Y M
which gives €, " Tow (69’%/ (5)

Thus it §s necessary cnly to evaluate €9 60 wnd Top drectly. Substitution
of Eqs. (2) end (%) into (1) results in {refaining only nonlinear tems in v

and its derivatives):
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5.5
e wie_z_ Yoo, w.
(] a atz & a¢z
R (6)
r | 2 2,76\2 =, 2]
+ v = 2 w.)% + (at2) (-—) P .y <ot 8)°1
2(a+z)2 L a 66 aesmeg 6 @ i
. V2 . W, cot @ 2 v,
e‘P'(“czte*'asine*E%'a_:Ee« arveis W2 )
) * ‘8 sin® 6
. . )
+ [(v-—u cote-—-—m—) + (a+z) (e )
2(a+z)2 9 sin? a oin 6
2
g (w‘p cot 0 - u,,.,)el
a%stn J
=( +i9__vcot6_gi_ “'ecp 2z w‘pcoto
790) asinf  a a @tz 8 8in 6 | a+z o sin 9’
wocot 0w
1 -z e
2({“2): I— ( 2040 9) ta (v a w99)( asin g a sin 6) (8)
w, cot 8 W v,
- LER 2
+z & sin 6 a sin 9)(" a smee ra) cot 0)

The tem 1/u+z may be expanded as:

11 z 2%
;;;ﬂ;(l-;+;-2----) (9)
2 1 7 . 2o
(m) s (1-22+35-..0) (x0)
8 a

and the principal strains nmay be expressed in the form:

cen(A+B=*Cz2+ ves)
€ * (D +Fa+ B2+ ..) (12)
Te™ (J + Kz L+ een)

®
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Pollowing the suggestion of Langhaar, @) the expensions for the strains are
cut off afier the Mnear texm in z. Subctituvion of Eqs: (9) and (20) into

Bqs. (6}, {7) end (8) then ylelds (retainicg only derivatives of w):

1 Ha
A-i(uo+w)+—-9-,:
2&‘
1
B"'_e(“"'"ee)
a
v, b
1 ? ?
D==(ucoto+ + W) +
& sin ¢ 2a231n29
v, (12)
?:-Lz(wi-vecocaf OZ
a sin™ @

§<

L
| ]

W,
-vcoe9)+-—g4’;—

+ v,
sin 8 [ 2225 in26

2
Ke (v, cot € -~ w, )
azs!.ne ® o
Stress Reswitants
In the case of plane stress, the elastic stress-strain relations
agsume the form:
a-——(e +v€] OH-—‘IG + v €] -"(—73 7 (13)
(] l-“ (] v Y% l-v 9l 1wy Top
Substitution of Eqs. (11) and (13) into the followin, stress cesulvent

formulas results in:

f --j!; gy (2+2) dzm -1—;- [(MVD) + 35 (B*VF)] (15}
ty f 1+ 5) dz = ;—V- [(xma) " 1;_ (Fovs)] (15)
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h h2
Gq’-..q)e jh W(l+-)dz=m{J+l—22-(K)] (16)
2
B 5o
M=| 2 1+2) dz = —EB B+ b))+ (A ]
x fh O v LR R LS ) C
2
h - :
Mo |2 2y gz = —EB kY
i, .f.*z 2, (243 s [(ms) + 2 oo | (28)
2
2 -
tgp = Mgy = f;‘: 2T (1 + f) dz = m [K+ (J)] (19)
2

Strain Energy
For small strains, the elastic strain energy of deformation is

given by the velume integra.l:

2x 2
f [ [ Gpéq + Tobp + 19?79?J(a+z) sin 6 d9dpaz (20)

2

this can be expressed in terms of strains only by use of Egs {13).

s L i ]

(e.*z) sin 9 A0dPdz

U
(21)

Replacing the strains by Eqs. ()1} and perforaing the integration, we huva:

u.ul+u2+05 (2?')
vhere: -
2 2t 8@

- f f [ 4p%2ud + (35Y) Ja] i 0 dodv  (23)

2(2-v%) 0 °

32 2x 6

v, « Ep%0 [ eFCI2uBF + ( Yy xz} sin 6 dbay  (2k)
2 aand o Jo
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Uy n 5 f f [A2+D +2vAD + (l;") J"]
2!‘(1' ) 7o sin 0 0%
+ ne[AmnF+v(Ar+Bn)+(-l-;-f)
(25)

'JJ_ is the memdbrave strain energy due to stretching of the middle suvface,
U, is the usual expression for the flexural strain energy used in most theories
of thin shells. U X is a correction to the bending energy due to the inclusioa

of the terr (a+z)2 instesd of a° in Eq. (22).

Kinetic IZnergy

The kinetic energy is givenr by the volume integral

T.Bf feﬂf [(u + z\yt) + (v + 28 ) + (v ) ](aa»z"2 sin 6 494dpdz
(26)

Potential knergy of External Pressure

During deformaticn, the elastic stiain energy changes. Also, the
external pres;urs dues work, and the corresponding change of cnergy must be
fncluded in the expression for the total encrgy.

The zxternal pressure is considered to be cansed by air blast, As
such it is directed nomal to the outer surface of the sheil. The potential

energy of the external pressure is then given as:

- [« e (20

vhere &(dV) is the change of sn infinitesimal element ¢2f voiuze. Since the
gecmetry of the shell is specified in polar cocrdinates (0,9), ¢ is convealent
to use these coordinates in specifying the volwz+ ““.nge. An infinf{tesizmal

elenent of shiell volume iy expressed as:

av = 0% sin 0 a9, & e




where p is the distance from the center of undeformed curvature to a point on

the outer surface, Calling ZD the distance to a point on the deformed outer

{ surface, and Bu the distance to a yoint on the undeformed cuter curface, the
potential energy of the external pressure becomes:
I -
) }' 1 ”\21( 2] -3 } _5
Qw - 3 Jo . q[p p 3in 0, 49y &9 - b sin 6 dedv] (28)

[RR——

- vaere:

BD - '\/(a +3-2‘ + u’(')2 + (u")2 + (\r*)2|
. (29)

3
* %
- OD=9+|( ; )-%( h“ ) +]

-a+-2-+w* aréfv‘ -
i (30

~ * v*
%30 [(—gt - )?
[a+§+w*] 8in 0 + u* cos 6 {a+-?-+w*]sin9+u*cose

! +.u]

where the sterred quontities indicate displacements on the outer surface,

——
» 3

) 3-2‘. Equatione (70) {ndicate that 8

of the displacements. Thus, we retain only the linear ferms .n these expres~

and P do not depend on the squares

o

sions, and have:

e

d [ u* 'I
46, = 46 + - d0 -
b w a ¢~g . wis

(31

LA

1)
49, = &+ op
b * (a+-’2-3&v*) afn 6 - .% 2oy G-

These relations are approximate, ond hagsed on the asswaption thas OD is a

fomnint f annd rm———

function of 8 only, and O)D is a functicn of ¢ only. With the relation that

[
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sin 6y = si:z} 9 + - hu ] = sin e{cos( ; )
L aF oo+ wk a5+ W
2 2
{32
u¥ .]
+ cot 6 sin =) |
a + 5 + uX 2
the potentiel energy express on becoues:
210 . . 2 z{f’,
n--lf f q (a+-}-‘+w*)zo-d'wé-' cos x + cot 6 sin x
5 Jo Jo 2
(33

[1 + %’5] [1 + %’J : { e+ -gj} }'sm ¢ aoap

where: X =

v¥ ~ y¥

y- h = h
(a +§+v*)sin9+u*cose (a+§) sin

Finally the integrand may be expanded by vsing the following approximations:

2
é
[(a+t::1 w)2+(u.s)2+(v*)2j -(8*'3*v*)5+-2§(a+-§+V*)[(u*)2|(v*)2]
cosx-ccs(—“;;——):x-%(—-x“—“—)2:1-%(._“_'h)2
a 45+ uwk v =+ W Py
2 2
sin x = ain { “; ) & “*'ﬁ’;“’“
n+-§+\-'* Atz VW n+=2-
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Substitution of these sppreximste relaticns into Eq. {33) results in the

foliowire expressicn for the potentinl eaergy {¥* = v):

. p2xpd . 3
as- ffo f; . {(a £ B4l - (2 +8) 51 sin 6 a3 (3L)

vhere: k. = {a + ., w)2 +2 (u*‘\2 2 ey . (35)
: S\ tg 2 7 2 25,
u oot 8 1 ,_u* 2 7707
k9-1+m—-§(m) {36}
2 2
vo*
N “ex T Sin @ “Ox VO* P
"5 =1+ h * hy 2 {37)
aty (a + §) sin @

Eguations of Motion

fhe principle of virtnal work, when extended to a dynamics problem

yields the useful relation

t.
[\l
I (T -g1-8)dt-0 ()

This is often referred to as "Hamilton's Principle.” For a conservative

system, Eq. (38) becomes
r\tl
sj, (T-9-0)dt=0 {30)
‘0

Bquaticn (79) izmplies thas anong all motions that willi carry a couservative
systen from a given configuration Xy toa given configuration £y in & given
time interval (to,tl), that which actually o°~.r¢ provides a vtationary value
0 the integral. The significance of E¢. (39) 3w thut the Buler-ragrange
cquations for the integral are the ditferential cquaticrs of notion for the

ayaten under caonsiderstion.
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Substitution of eacsgy funcrions from Egs. (23), (24), (25), (26),

and {34) Iuto Bg. (33) yieids the following varfationel equation:

2

2

L

2 2 2
(a+z) [(ut + zvt) + ('/,5 + zbt) I3 ("t)

ol

Bha2

lAz + 5% ¢ 2D + (-1;—”) J2]

-1-

F© + 2uBF + l") Kei

Jo 32
0 -E“L-[Bh 2 sin @ d9aat = O

2!;(1-v2)

2&(1-,, ) l_{ + .57+ 2D + (1-v) Jz}

? l-v
i + ba AB+D*-‘+.4(AF+BD)+(

r 3 ) E4] -
1 +%!'(s+g+v)(klk2k3)-(&+§ J // (%)
.-

} which tecoaes
2 v
9a°h 2 2 2 2 ot
* S0 QME 5w + (24 n) (D) + n(vE, + =2 sine
i‘ 2 [_ t t T 8t sln20
'R
t Pt
: ; L_ - Galugio, * 5imp)
{' ﬂ—zi‘!‘x +D2+2vAD+(L3).JIsm8
i 3 2(1-v°)

e e fe e

sj.\tlf?x./‘
3,2
t,70 Y0 | _ En’a

(.2, .2 lovy 2
0 m l_s 4+ ¥ 4 2vBF + (—,:—) K ]sin [ 46494La0
3 . teu ) ‘
Eh 2 v L=y
. a0 s 2+ (1) S \
2’6(1—\/2) { } smel
L%{AB+DF*VH“tBD)+( J*_’} |
n A1
\%kun*g*.r)((k 5)-(8‘72 Jl:s!.ne / (32)
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Designating the integrand o2 Eq. (%) by the symbol “f£," the

Buler-lagronge Byuations assume the form:

a 3 Ay d A, d e, P o3 of
-&;-&;(E)-&;( )-&;(Wt')+;o?(a§5) \2( )

(4%
I S - 4 F e P A
32 e ) * 0% Gap) * 303 (ep)) * 303 ()

Performing the operations indicated in Egs. (42), (h3), end (%4) results in
three nonlinesr partial differential equations in three unknowns (u,v,w).
Many of the terms in these eguations may ve replaced by their symbelic
representation as stress resultants, These thrie equations, in terns of

stress resultants are presented below.

. -
S5 (s + 5) + gl S5 (aigq + Mpg) + cot @ [alty - 1) + (4 - )|

2 W r
- oo, G -] e B %5(%’:)-:5\31-1 (15)
9 (e, +M )+—-1——a-(a.N + M) +2cot 6 jaN, +M
% Moo * Vep! TTine I \Wo t Y/ (: T

2 %
5 - Ly ome | L 2, _ 2 (N,
v oh [Vtt; (ha *3) " Fom 9] e [%g %) % (g%‘,’]
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poc am‘e)] e e (M, + ““—)J
& g 3
* 2% [M%‘ + anN”J -sin @ [n (¥ + H@) +a (0 N<’r"_j
3 e sin . qq) .
+5 [ (8, + 88g) * 55 5m 6 vty * At - €05 6 (i, + anll;)

3 v vy ) -
5 [ oy (4 + allg) + 5arg (gy *+ gl + 2 008 Sl + a.nNe(,'\)J

- 2 v... 1}
2 et iy .1 . s
= ph’ sin @ wm:(h2 + 12) +5 (“:t cot 8 + Uge, + Ty 9)‘
1 Vi
- = (W, . cot @ + W ) !
72 Yote oot * 02 o i
f 3 C
B3-S wa""» 7 \'ﬁ-) *w(ﬁ&ﬂ
(57)
sin 8 h
whers: Q= 3-5-3‘-‘—- (a +35+ ")(klkakj) (18)
In the 1izdt, where n-—e-0, and where the nonlincerity of Ba. (W7) is
neglected, these equations assume the fora:
H AN w
(n.‘l +Y, o)+ Mn "9 % (oﬂw + MW) + cot 8 !‘.’\ ig - Mg {y - “ﬁ”j
aonlu, (9

3 y,_1 3 cor 0 1. R P
G (Moo * Moo * 5155 T (altg, + My + 22080 l-aﬂeq) + Hp| pha® v, £50)

50 3 R ™ 2
Sty | 2 )

___ v +2cot B -cotog
W oo mAl 69£ %

‘M
2cot - . 2
v S + [(M MO) a(He + HQ)] = hn® Vo

(1)
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The left-hand sides of Egs. (4g), (50), end (51) are in the same fora as
those dcvived by Flﬁ};ge(B) by static cquididrina considerations,

Equations (45) through (4T), when coupled with the stress resvltant
formulas yield three equations ip three unkuowns. These equaticns include
nonlinear, large-displacement effecys, rotatory inertia effects, and the
effects of change of geometry on the dynenic equilibrium of the system.

This change of geometry effect enters in two ways. It enters als
three equations througa the energy of the external pressure on a shell
surface whose area changes with time. It also enters the equation for radial
equilidriuz, Eq. (47), due to the large deformation effect vhich alters tne
lire of action of the stress resultants. This latter effect Is observed only
ta Eq. (47) because ondy nonlinear terms in w and its derivatives have been
retained in Fqs. {12).

The nonlinear equations are too lengthy to express here in displace~

zent form, however, the linearized Egs. (49) through (51) are presented here:

cot 6
ir
(1+n)[u99+u cot9+( )—W—-u(vi»cot 8) + (=X V)sine (5"’—1-;‘—‘-’-
./ v, cot 8 7
+ ¥, (.‘dv)" -n [“669 + Vgg COL 8 + Wy (1- cot26) * 9@; .- 5
= sin‘@ 3in“0
u
J.- SN (52)
@ 2
0
L4y Sev s 9, VW o=y 8 2,
(l+){ ) ( )u —e b (ZENv, ¢ v, cOt S+ v - v cott ()
sm ° sm20 a8 27ee e
2w v
st 6 9 tt
+ (2+v) } Yogo_ +—m—&w -——,—+-—-']--—- «0 (5%
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Equations (52) through (54} agree exactly with Eqs. 85(a-c) of Ref. {3) except
for the omission of a term in Eq. 85{a) of Flipge's text. These equations are
adequate to use in the computation of the natural frequencies of tlhe apherical

shell. T find th

irg precoures, however, the nonliinear tems of
Eqs. (45) through (7) zust be added to these equations. Alse, the rotatory

inertia terms can no longer Ye oaitied,
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